Search results for "Biomembranes"

showing 3 items of 3 documents

Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers

2018

The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of …

0301 basic medicinePhase transitionMolecular dynamic12-DipalmitoylphosphatidylcholineLipid BilayersMolecular ConformationBiophysicsBendingMolecular Dynamics SimulationMolecular dynamics01 natural sciencesBiochemistry03 medical and health sciencesMolecular dynamicsPhase (matter)BiomembranesBiomembrane0103 physical sciencesMoleculeLipid bilayerMolecular BiologyMulti-scalePhase transitionMARTINI010304 chemical physicsChemistryTransition temperatureTemperatureCell BiologyCrystallography030104 developmental biologyChemical physicsIntramolecular forcePhosphatidylcholinesBiomembranes; MARTINI; Molecular dynamics; Multi-scale; Phase transition; Biophysics; Biochemistry; Molecular Biology; Cell Biology
researchProduct

Main Fuel Cells mathematical models: Comparison and analysis in terms of free parameters

2010

This paper resumes the main mathematical models of Fuel Cells (PEM models). In particular, a comparison study of the various models introduced in the technical literature is presented and the dependency of the various model parameters is analyzed in different operating conditions. As the manifold of the model parameter is very wide and their determination is difficult, it is mandatory to introduce approximations and simplifications on which each model is based. The novelty of this work is the organization of the existing models in three categories with regard to the number of free parameters and to the dependency of such parameters on the different running conditions and the usage of a refe…

Mathematical optimizationEngineeringWork (thermodynamics)Dependency (UML)EquationResistancereference modelproton exchange membrane fuel cells;PEM models;free parameters;main fuel cells mathematical models;reference model;Biomembranes;Equations;Fuel cells;Load modeling;Mathematical model;Numerical models;Resistance;Fuel Cell;Mathematical modeling;Parameter AnalysisSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettriciproton exchange membrane fuel cellPEM modelNumerical modelParameter AnalysisMathematical modelBiomembranemain fuel cells mathematical modelReference modelSimulationLoad modelingMathematical modelbusiness.industryFuel cellNoveltyManifoldFuel cellsfree parameterMathematical modelingbusinessFree parameter
researchProduct

Ionic conduction, rectification, and selectivity in single conical nanopores

2006

Modern track-etching methods allow the preparation of membranes containing a single charged conical nanopore that shows high ionic permselectivity due to the electrical interactions of the surface pore charges with the mobile ions in the aqueous solution. The nanopore has potential applications in electrically assisted single-particle detection, analysis, and separation of biomolecules. We present a detailed theoretical and experimental account of the effects of pore radii and electrolyte concentration on the current-voltage and current-concentration curves. The physical model used is based on the Nernst-Planck and Poisson equations. Since the validity of continuum models for the descriptio…

Models MolecularGeneral Physics and AstronomyIonic bondingRectificationNanotechnologyElectrolytePoisson equationIonElectrolytesBiopolymersIonic conductivityBiomembranesIonic conductivityComputer SimulationPoisson DistributionPhysical and Theoretical ChemistryParticle Size:FÍSICA::Química física [UNESCO]IonsPhysics::Biological PhysicsIon TransportChemistryElectric ConductivityWaterBiological TransportConical surfaceMolecular biophysicsNanostructuresUNESCO::FÍSICA::Química físicaSolutionsNanoporeMembraneBiomembranes ; Bioelectric phenomena ; Ionic conductivity ; Rectification ; Molecular biophysics ; Electrolytes ; Poisson equationChemical physicsBioelectric phenomenaPoisson's equationPorosity
researchProduct